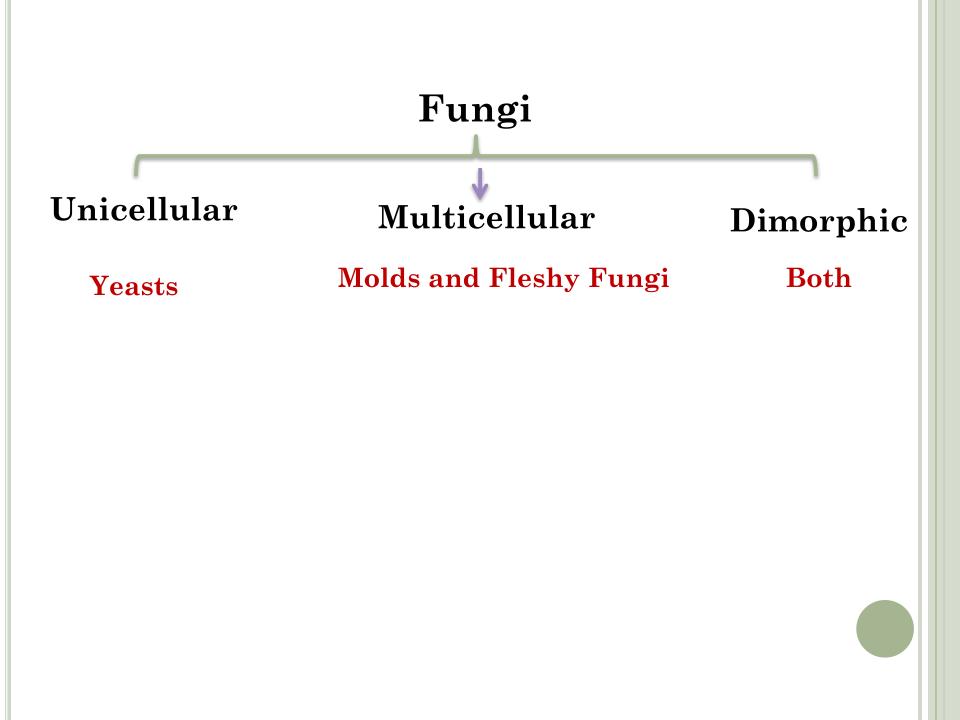


<u>Characteristics of Fungi</u>

- Fungi are more closely related to animals than plants
- Fungi are heterotrophic:

they use complex organic compounds as sources of energy and carbon, not photosynthesis


-Fungi multiply either asexually, sexually, or both -Fungi interact with other organisms by either forming beneficial or mutualistic associations (mycorrhizae and lichens) or by causing serious infections.

- **mycorrhiza**: a symbiotic association between a fungus and the roots of a vascular plant

- lichen: any of many symbiotic organisms, being associations of fungi and algae; often found as white or yellow patches on old walls, etc.

FUNGI (Mycology)

- Diverse group of heterotrophs.
 - Many are ecologically important saprophytes (consume dead and decaying matter)
 - Others are parasites.
- Most are multicellular, but yeasts are unicellular.
 - Most are aerobes or facultative anaerobes.
- Cell walls are made up of chitin (polysaccharide).
- Over 100,000 fungal species identified. Only about 100 are human or animal pathogens.
 - Most human fungal infections are nosocomial and/or occur in immunocompromised individuals (opportunistic infections).
- Fungal diseases in plants cause over 1 billion dollars/year in losses.

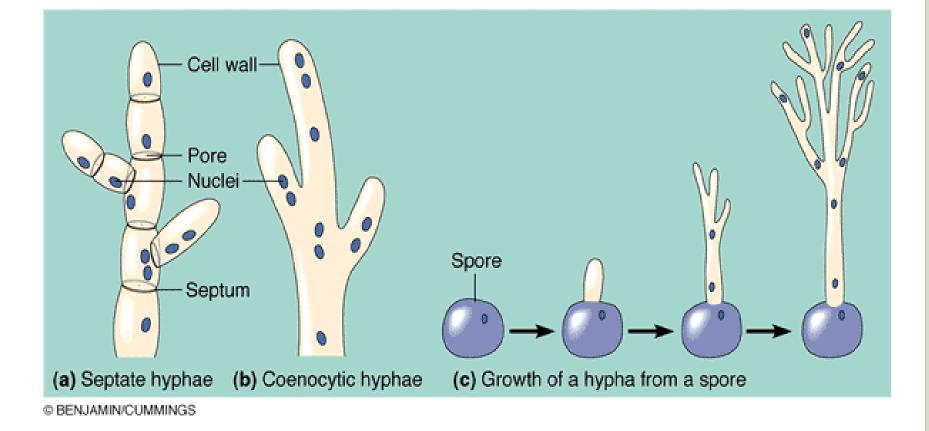
<u>Characteristics</u> of Fungi

1. Yeasts

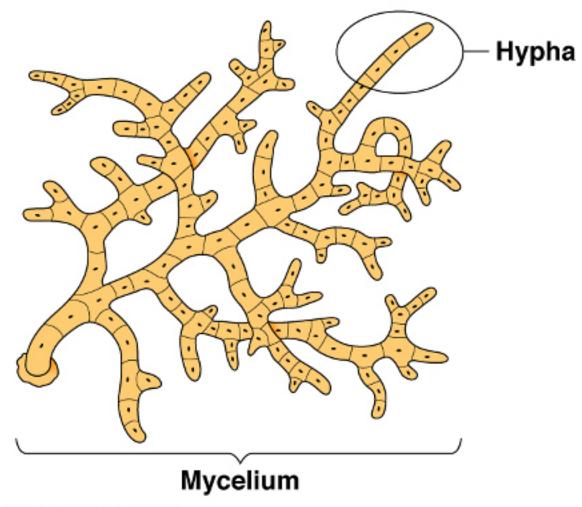
- Unicellular fungi, nonfilamentous, typically oval or spherical cells. Reproduce by mitosis:
 - Fission yeasts: Divide evenly to produce two new cells (*Schizosaccharomyces*).
 - Budding yeasts: Divide unevenly by budding (Saccharomyces).
 - Budding yeasts can form pseudohypha, a short chain of undetached cells.

Candida albicans invade tissues through pseudohyphae.

 Yeasts are facultative anaerobes, which allows them to grow in a variety of environments.

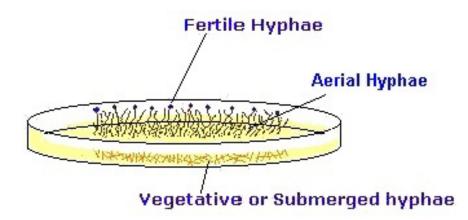

- When oxygen is available, they carry out aerobic respiration.
- When oxygen is not available, they ferment carbohydrates to produce ethanol and carbon dioxide.

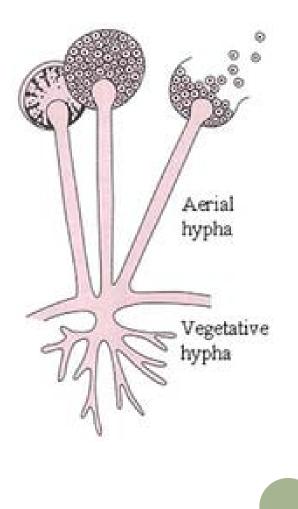
<u>Characteristics of Fungi (Continued)</u>


2. Molds and Fleshy Fungi

- Multicellular, filamentous fungi.
 - Identified by physical appearance, colony characteristics, and reproductive spores.
 - Thallus: Body of a mold or fleshy fungus. Consists of many hyphae.
 - Hyphae (Sing: Hypha): Long filaments of cells joined together.
 - Septate hyphae: Cells are divided by cross-walls (septa).
 - Coenocytic (Aseptate) hyphae: Long, continuous cells that are not divided by septa.
 - -Hyphae grow by elongating at the tips.
 - -Each part of a hypha is capable of growth.
 - Vegetative Hypha: Portion that obtains nutrients.
 - **Reproductive or Aerial Hypha:** Portion connected with reproduction.
 - Mycelium: Large, visible, filamentous mass made up of many hyphae.

CHARACTERISTICS OF FUNGAL HYPHAE: SEPTATE VERSUS COENOCYTIC




MYCELIUM: LARGE, VISIBLE MASS OF HYPHAE

CAddison Wesley Longman, Inc.

Vegetative and Reproductive or Aerial Hypha

<u>Characteristics of Fungi (Continued)</u> <u>Dimorphic Fungi</u>

- Dimorphic fungi are those fungi that exist either in yeast form or as mold (mycelial form) depending on environmental conditions, physiological conditions of the fungus or the genetic characteristics
- Many pathogenic species.
 - Mold form produces aerial and vegetative hyphae.
 - Yeast form reproduces by budding.
- Dimorphism in pathogenic fungi typically depends on temperature:
 - At 37°C: Yeast form.
 - At 25°C: Mold form.
- Dimorphism in nonpathogenic fungi may depend on other factors: Carbon dioxide concentration.

LIFE CYCLE OF FUNGI

- Filamentous fungi can reproduce asexually by fragmentation of their hyphae.
- Fungal spores are formed from aerial hyphae and are used for both sexual and asexual reproduction.
 - 1. Asexual spores: Formed by the aerial hyphae of one organism. New organisms are identical to parent.
 - Conidiospore: Unicellular or multicellular spore that is not enclosed in a sac.
 - Chlamydospore: Thick-walled spore formed within a hyphal segment.
 - Sporangiospore: Asexual spore formed within a sac (sporangium).
 - 2. Sexual spores: Formed by the fusion of nuclei from two opposite mating strains of the same species. New organisms are different from both parents.

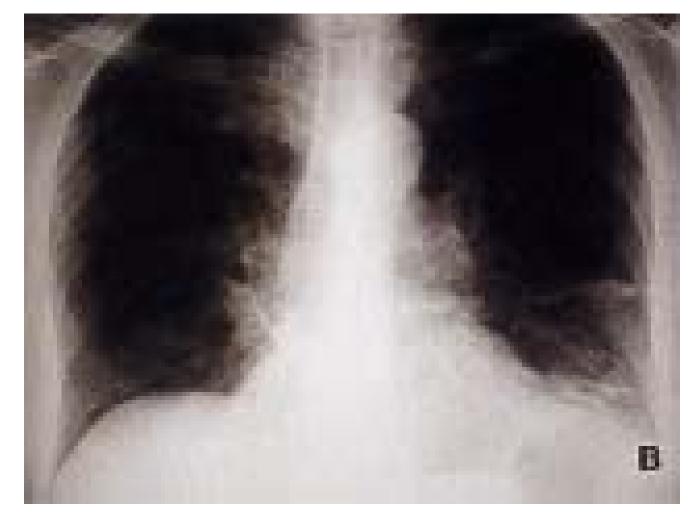
Ascospores enclosed in a sac-like structure (ascus).

Basidiospores: Spores formed externally on a club shaped sexual structure or base called **basidium**.

NUTRITIONAL ADAPTATIONS OF FUNGI

- Fungi absorb their food, rather than ingesting it.
- Fungi grow better at a pH of 5, which is too acidic for most bacteria.
- Almost all molds are aerobic. Most yeasts are facultative anaerobes.
- Fungi are more resistant to high osmotic pressure than bacteria.
- Fungi can grow on substances with very low moisture.
- Fungi require less nitrogen than bacteria to grow.
- Fungi can break down complex carbohydrates (wood, paper), that most bacteria cannot.

FUNGAL DISEASES


Mycosis:

Any fungal disease. Tend to be chronic because fungi grow slowly.

Mycoses are classified into the following categories:

- I. Systemic mycoses: Fungal infections deep within the body. Can affect a number of tissues and organs.
- Usually caused by fungi that live in the soil and are inhaled.
- Not contagious.
- Examples:
 - Histoplasmosis (*Histoplasma capsulatum*): Initial infection in lungs. Later spreads through blood to most organs.
 - **Coccidiomycosis** (*Coccidioides immites*): Resembles tuberculosis.

Systemic Mycosis: Histoplasmosis

Disseminated *Histoplasma capsulatum*, lung infection. Source: Microbiology Perspectives, 1999.

FUNGAL DISEASES (Continued)

- **II. Cutaneous mycoses:** Fungal infections of the skin, hair, and nails.
- Secrete keratinase, an enzyme that degrades keratin.
- Infection is transmitted by direct contact or contact with infected hair (hair salon) or cells (nail files, shower floors).
- Examples:
 - **Ringworm** (*Tinea capitis* and *T. corporis*)
 - Athlete's foot (Tinea pedis)
 - Jock itch (Tinea cruris)

CUTANEOUS MYCOSIS

Ringworm skin infection: *Tinea corporis* Source: Microbiology Perspectives, 1999

CUTANEOUS MYCOSIS

Candida albicans infection of the nails. Source: Microbiology Perspectives, 1999.

Athlete's foot

Athlete's foot

FUNGAL DISEASES (Continued)

- III. Subcutaneous mycoses: Fungal infections beneath the skin.
- Caused by saprophytic fungi that live in soil or on vegetation.
- Infection occurs by implantation of spores or mycelial fragments into a skin wound.
- Can spread to lymph vessels.

IV. Superficial mycoses: Infections of hair shafts and superficial epidermal cells. Prevalent in tropical climates.

FUNGAL DISEASES (Continued)

Opportunistic mycoses: Caused by organisms that are generally harmless unless individual has weakened defenses:

- AIDS and cancer patients
- Individuals treated with broad spectrum antibiotics
- Very old or very young individuals (newborns).
- **Examples:**
 - Aspergillosis: Inhalation of Aspergillus spores.
 - Yeast Infections or Candidiasis: Caused mainly by *Candida albicans*. Part of normal mouth, esophagus, and vaginal flora.

ECONOMIC IMPORTANCE OF FUNGI

- 25-50% of harvested fruits and vegetables are damaged by fungi.
- Fungal infections of plants are commonly called rots, rusts, blights, wilts, and smuts.
 - *Phytophthora infestans*: Caused great potato famine in mid-1800s. Over 1 million people died from starvation in Ireland. Many immigrated to the U.S.

Beneficial fungi:

 Fungi have several positive economic effects, such as consuming biodegradable waste, improving soil, acting as symbiotic organisms for various crops, generating antibiotics and other medicines, and being a food source

Fungi used as food:

Mushrooms and morels:- These are edible fungi used as delicious vegetables all over the world.

Yeast:- It mainly consists of carbohydrates, proteins and fats. Yeast food is a rich source of vitamins such a **thiamin**, **riboflavin**, **nicotinic acid**, **pantothenic acid**, **biotin**, **pyridoxin and amino benzoic acid**.

Fungi used in food processing:

Fungi such as species of *Aspergillus* and *Penicillium* are employed in the processing of certain food products, baking and cheese industry. **Bread Making:**

Saccharomyces cerevisiae is used in bread making.

Fungi in medicine:

Fungi were extensively used for their supposed curative properties.

(a) Antibiotics:

Notatin Penicillin Penicillium notatum, Penicillium chrysogenum

(b)Steroids: Except Myxomycetes wide variety of fungi synthesized steroids.

(c)Vitamins: These include thiamin, Riboflavin, Pantothenic acid, Pyridoxin, Biotin, Choline Ergosterol and Vitamin B and D.

(d)Therapeutic uses of – Extracts of *Saccharomyces cerevisiae* and *Aspergillus niger* have proved specific in extreme cases of malignancy

Other examples

Candida oleophila: Prevents fungal growth on harvested fruits.

Genetically engineered yeast strains are used to make proteins (Hepatitis B vaccine).

Taxomyces: Produces anticancer drug taxol.

Trichoderma: Produces cellulose. Used to make fruit juice.